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Abstract
Gene expression can be modified in people who are chronically exposed to high concentrations of heavy metals. The soil 
surrounding the Ventanas Industrial Complex, located on the coastal zone of Puchuncaví and Quintero townships (Chile), 
contain heavy metal concentrations (As, Cu, Pb, Zn, among others) that far exceed international standards. The aim of this 
study was to determine the potential association of the heavy metals in soils, especially arsenic, with the status of methylation 
of four tumor suppressor genes in permanent residents in those townships. To study the methylation status in genes p53, p16, 
APC, and RASSF1A, we took blood samples from adults living in areas near the industrial complex for at least 5 years and 
compared it to blood samples from adults living in areas with normal heavy metal concentrations of soils. Results indicated 
that inhabitants of an area with high levels of heavy metals in soil have a significantly higher proportion of methylation in the 
promoter region of the p53 tumor suppressor gene compared with control areas (p-value: 0.0035). This is the first study to 
consider associations between heavy metal exposure in humans and aberrant DNA methylation in Chile. Our results suggest 
more research to support consistent decision-making on processes of environmental remediation or prevention of exposure.
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Introduction

In Chile, mining represents a major component of the overall 
economy, comprising 52% of total exports (OECD 2018). In 
the 1960s, the Ventanas Industrial Complex (VIC) linked to 
mining activities was built in the coastal zone of Quintero and 

Puchuncaví in central Chile. VIC emitted heavy metal–rich 
particulate matter that was dispersed by the wind and depos-
ited on the soil surrounding it from 1964 until 1992, when 
environmental regulations were established (Delgado and 
Serey 2002; Rueda-Holgado et al. 2016; González et al. 2014). 
As a result, the soil in this area has high concentrations of 
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heavy metals (González et al. 2014; Ginocchio 2000), which 
has been shown to be a risk for humans living in the area 
(Salmani-Ghabeshi et al., 2016; Berasaluce et al. 2019; Tapia-
Gatica et al. 2020). Chronic exposure by ingestion, inhala-
tion, or dermal contact to high amounts of heavy metals in the 
soil, such as arsenic, chromium, nickel, and cadmium, among 
others, may lead to detrimental effects on health, including 
epigenetic changes—modifications of genetic material with-
out modifications of the DNA sequence—such as methyla-
tion (Martinez-Zamudio and Ha 2011; Bitto et al. 2014). DNA 
methylation is a common mechanism of gene silencing that 
occurs on CpG islands—genomic regions located near or in 
gene transcription initiation sites (Hou et al. 2011; Moore et al. 
2013). Whenever these methylated genes are responsible for 
coding a tumor suppressor protein, chronic exposure to heavy 
metals could predispose the carrier to human carcinogenesis. 
Aberrant methylation and the resulting silencing of a tumor 
suppressor gene may contribute to tumor initiation and pro-
gression (Gauthier et al. 2007; Tanemura et al. 2009; Venza 
et al. 2016), with the methylations accumulating in response to 
continuous exposure and persisting even in the absence of the 
conditions that led to the methylation (Richards 2006; Dolinoy 
et al. 2007; Anway et al. 2005).

The p53 pathway is upregulated when DNA damage is 
incurred. This can lead to either cell cycle arrest in order to 
permit DNA repair or the initiation of sequences leading to 
apoptosis, thus impeding the replication of damaged cells 
(Bourdon 2007; Christmann and Kaina 2019). p53 activity 
is frequently lost in human cancer, either by gene mutation 
or inactivation (Bourdon 2007; Christmann and Kaina 2019; 
Sabapathy and Lane 2018). Its mutation has been described as 
a key prognostic factor in several cancer types, including mul-
tiple myeloma, acute myelogenous leukemia, renal cell, and 
hepatocellular carcinomas (Liu et al. 2012; Knezović Florijan 
et al. 2019; Abdel-Aziz et al. 2009; Hunter and Sallman 2019).

Other studies have found that p16 has suspected involvement 
in growth arrest at G1/S, in damaged cells, in cell cycle control, 
and in the cellular response to genotoxic agents (Lewin, 2001; 
Sherr and Roberts 1999; Li et al. 2011). Adenomatous poly-
posis coli (APC) has been shown to be related to phosphoryla-
tion and ubiquitination of transcription factors associated with 
proliferation and RASSF1A in the maintenance of genomic 
stability and cell motility and invasion (Yang et al. 2006; Song 
et al. 2004; Vos et al. 2004; Dallol et al. 2005).

Despite data suggesting an association between heavy 
metal concentrations in soils in the abovementioned indus-
trial area and effects on human health, no previous studies 
had provided empirical evidence. Therefore, the objective 
of this study was to determine the association between the 
heavy metal concentration in the soil surrounding the VIC 
and the methylation status in four tumor suppressor genes in 
permanent residents of the local townships.

Materials and methods

Study design

Although the contamination in the soil is polymetallic, back-
ground information indicates that among the metals present, 
only As, Ni, and Cr are proven carcinogens; for the rest of 
the metals present, there is insufficient evidence on carcino-
genicity, or they are proven not to be carcinogenic (ATSDR 
2007). Among these metals, according to previous evidence 
in the area, only As exceeds the international standard levels, 
specifically, the Italian Standard (20 mg/kg, Ministro Dell' 
Ambiente 1999). Therefore, based on As mapping, the sam-
pling areas were defined. The Italian Standard was chosen 
as the reference value because Chile has no quality regula-
tion for soil, and Italy has a geological background (orogeny) 
and a climate (dry summer, temperate climate) similar to the 
study area. It is worth mentioning that although a study of 
background levels of metals in the soil was carried out in the 
area, which gave a value (UCL 95%) of 12.8 mg/kg for As 
(PGS Chile 2015), no progress has yet been made in generat-
ing quality standards based on them. The values of the Italian 
standard are consistent with the background values identified.

Further, previous research has demonstrated that As 
correlates adequately with the remaining heavy metals 
(R2 = 0.5–0.8) (De Gregori et al. 2003), so its spatial distri-
bution would be representative of the rest of them.

To select the human blood sampling areas, we measured 
the As concentration in the soil of the study area and, based 
on the results, generated a continuous map of the concentra-
tions using geostatistical analysis.

Next, we conducted a cross-sectional study (Setia, 2016), 
using volunteers, to assess the methylation status of promoters 
from four selected genes, p53, p16, APC, and RASSF1A. The 
volunteers included inhabitants of areas with high concentra-
tions of heavy metals in the soil and, for a control group, inhab-
itants of areas with normal concentrations of heavy metals.

Ethics statement

The research protocol was approved by the ethics committee at 
the Hospital Dr. Gustavo Fricke Regional Health Service (CEC 
46/2012). All research subjects were informed about the study 
and the sampling protocols, and they provided written consent.

Area of study

The study took place in the area surrounding the VIC, which 
comprised two entire townships, Quintero and Puchuncaví, 
in Chile’s Valparaíso region (Fig. 1). The sampling also 
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included a township south of Quintero and Puchuncaví, Con-
cón. This third township was included because it comprised 
a large area with normal concentrations of heavy metals in 
the soil, where control blood samples could be collected.

Sampling procedures

Soil samples

The study area was stratified by intersecting the study area 
boundaries with layers of variables related to potential 

dissemination of contaminants (theoretical information about 
altitude, distance from main source, slope and wind direction) 
(following the methodology of Vasilakos et al. 2007; Gohm 
et al. 2009; Child et al. 2018). A total of 485 sampling units 
were defined in order to finally obtain a representative sample 
of the study area. This procedure was performed using GIS 
Software application Arc Map (10.7 version, ESRI Inc).

The field sampling campaign had a success rate of 70% 
(of all sampling units) and generated 340 final topsoil sam-
ples 0–15 cm deep and approximately 400 g. For each soil 

Fig. 1   Human blood sampling 
areas and sampling points
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sample, geographic coordinates were recorded using GPS 
equipment (Garmin eTrex Summit).

Blood samples

Based on the geostatistical analysis of the data, described in 
detail in “Geostatistical analysis and human blood sampling 
areas”, two types of blood sampling areas were defined: (1) 
“exposed” (i.e., high concentrations of heavy metals) and 
(2) “control” (low concentrations of heavy metals) (Fig. 1).

We then calculated the proper sample size for detecting 
a difference in methylation of 10% with a statistical power 
of 80% and a 5% significance level. The minimum sample 
size was 128 participants per group. A total of 280 indi-
viduals agreed to participate in the study—140 from the 
“exposed” area and 140 from the control area. The study 
participant inclusion criteria were (1) area resident for at 
least 5 years, (2) 18 years of age or older, and (3) the provi-
sion of informed consent. The criterion of 5 years of resi-
dence was chosen because the minimum time of exposure 
that generates epigenetic changes is not fully known. The 
authors studying epigenetic changes due to exposure to pol-
luted air indicate that more than 1 year is considered long-
term exposure (White et al. 2019; Prunicki, et al. 2018).

Random sampling was performed to ensure the homo-
geneity of the two groups was performed. Any differences 
between the exposed group and the control group with 
regard to demographic characteristics were assessed and 
controlled in the final statistical analysis as needed. The 
selected participants were visited at their homes and donated 
15 mL of peripheral blood for the study. The blood sam-
ples were stored in ethylenediaminetetraacetic acid (EDTA) 
tubes, in a cooler, using dry ice to maintain the temperature 
at – 70 °C until all samples were collected, and then ana-
lyzed (Chacón-Cortes and Griffiths 2014).

Analysis

Soil analysis

Soil samples were dried for 48 h, at a temperature of 40 °C, 
and then sieved through a 2-mm mesh. Then, samples were 
digested during 12 h in boiling nitric acid, followed by 
perchloric acid addition. In order to prevent volatilization 
of As during the digestion process, a Teflon stopper with 
30-cm-long glass reflux tube was used (Verlinden 1982). 
Then, total concentrations of arsenic were assessed using 
atomic absorption spectrophotometry (AAS) (GBC Scien-
tific Equipment PTY Ltd., Dandenong, Victoria, Australia; 
model 902) coupled with a hydride vapor generator (model 
VP100) following the procedure of Tapia-Gatica et  al 
(2020). Quality assurance was performed using duplicate 
assessment and a certified reference soil sample (GRX-2) 

obtained from the United States Geological Survey. The 
detection limit of As was 0.01 mg/kg.

Geostatistical analysis and human blood sampling areas

Various geostatistical methods to generate a raster format 
map of the concentration of As in the soil were used. This 
procedure, the As concentration in soil, and the map of can-
cer risk assessment to As for children and adults were previ-
ously published in Tapia-Gatica et al. 2020.

Then, we defined two different blood sampling areas, 
one with normal concentration of As in soil and one with a 
high concentration. To depict these areas, we converted the 
original soil arsenic concentration raster surface to vector 
polygons, defining 4 categories of concentration.

The lower category, corresponding to the “control” area 
(normal soil arsenic concentration), was defined according to 
the criteria for acceptable concentration in soils of green and 
residential areas reported in the Italian Standard (20 mg/kg). The 
remaining 3 categories of soil As concentrations were defined as 
follows, based on the criteria for similar land surfaces: 21–30 mg/
kg and 30–150 mg/kg. The category for the highest concentration 
(> 30 mg/kg) was selected to represent the exposed area.

In summary, we defined two different blood-sampling 
areas: (1) “exposed,” with a soil As concentration > 30 mg/
kg and (2) a control area, with a soil As concentra-
tion ≤ 20 mg/kg (Fig. 1).

DNA analysis

Genomic DNA (gDNA) was isolated from leukocytes using the 
High Pure PCR Template Preparation Kit (Roche, Mannheim, 
Germany), following the manufacturer’s protocol (Ghaheri 
et al. 2016). DNA concentration was determined using a Nan-
oDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA). Genomic DNA integrity of all of our 
clinical samples using gel electrophoresis was assessed.

To carry out the sodium bisulfite conversion, 1 μg of 
DNA from each sample was modified with sodium bisulfite 
(SB). Bisulfite conversion was carried out using the EZ DNA 
Methylation Gold Kit (ZYMO Research Co., Orange, CA), 
according to the manufacturer’s instructions. The converted 
DNA was stored at − 70 °C until used. Built-in controls to 
verify bisulfite conversion were used (Wojdacz et al., 2008).

Human placental genomic DNA (gDNA; Sigma-Aldrich) 
and Universal Methylated Human DNA Standard (ZYMO 
Research Co., Orange, CA) were used as fully unmethylated 
and fully methylated controls respectively (Dimitrakopou-
los et at, 2012). Both controls underwent sodium bisulfite 
conversion, and a series of synthetic controls containing 0%, 
1%, 10%, 50%, and 100% methylated DNA were prepared by 
spiking the fully methylated DNA control into the unmethyl-
ated (Wojdacz et al., 2008).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Environmental Science and Pollution Research	

1 3

Real-time PCR was performed with the KapaHRM Fast 
master mix 2 × (Kapa Biosystems; USA). Briefly, 1 μL 
(~ 100 ng) of SB converted DNA was added in the PCR 
reaction mix, which consisted of 1 × PCR Buffer (Invitrogen, 
USA), 0.4 mM for each dNTP (Invitrogen, USA), 0.05 U/
μL PlatinumW Taq DNA Polymerase (Invitrogen, USA), 
0.25 μg/μL BSA (Sigma, Germany), 1 × LCGreen Plus Dye 
(Idaho Technology, USA), 0.25 μM each primer (forward 
and reverse), and MgCl2 (2.5 mM). dH2O was used to sup-
plement up to 10μL. The primer set (Table 1) was designed 
using the National Center for Biotechnology Information 
(NCBI) web tool Primer-BLAST (Basic Local Alignment 
Search Tool), according to guidelines (Wojdacz et al., 2008). 
The real-time PCR protocol began with one cycle at 95 °C 
for 3 min followed by 50 cycles of 95 °C for 10 s and 65 °C 
for 30 s. Following PCR amplification, a re-annealing cycle 
consisting of 95 °C for 1 min and a rapid cooling to 70 °C 
for 1 min was introduced. All PCR reactions were performed 
in triplicate for each sample.

Then, High Resolution Melting Analysis was performed. 
Melting data acquisition began at 69 °C and ended in 95 °C, 
using a ramp rate of 0.3 °C/s. High Resolution Melting Anal-
ysis was also performed in the KapaHRM Fast master mix 
2 × (Kapa Biosystems Foster City, CA, USA). Data process-
ing was performed using the EcoStudy 5.0 gene scanning 
software (Illumina, USA). The settings for data collection 
were 50 fluorescence acquisition points per degree centi-
grade resulting on a ramp rate of 0.01 °C/s. Comparing the 
peaks of the melting curve of an unknown sample with those 
of the controls gave the semi-quantitative estimation for the 
methylation level of that sample as reported before (Wojdacz 
et al. 2008; Wojdacz 2012).

Statistical analysis

Complementary to the geostatistical analysis, the exist-
ence of differences in the concentrations of As, between 
the control and exposed area, was corroborated. This was 
done using a Student t test for independent samples after 
data normalization using ln (data with positive skewness) 

and assuming different variances between groups. A p-value 
of < 0.05 was considered to be statistically significant.

We expressed the degree of methylation as the percent-
age of methylated cytosines (% 5mC). Participants were 
categorized as free of any methylation versus any degree of 
methylation in each of the genes we assessed. All reported 
p-values are from two-sided tests. A p-value of < 0.05 was 
considered to be statistically significant.

In the inferential analysis, for all continuous variables, 
we used the Student’s t test or the Mann–Whitney–Wilcoxon 
test, depending on the assumptions met by the collected data. 
When comparing two categorical variables, the chi-square 
test was used. To control for potential confounders, a multi-
variate logistic regression model was fitted, controlling for 
age, smoking status, and years of residence.

Statistical analyses were performed using SPSS Statistic 
20 (IBM Corp. 2011).

Results

Soil contamination of the study area

The results indicated that 17% of the total study area pre-
sents As concentrations in the soil that exceed the acceptable 
limits according to the Italian standard (20 mg/kg). In this 
area, there are 7 rural towns populated with approximately 
2140 inhabitants (INE 2019). The mean As concentration in 
soils of the control area was 16 ± 10.9 mg/kg, while in the 
exposed area it was 33 ± 25.2 mg/kg. The statistical analyses 
indicate significant differences between both sampling areas 
(p = 0.00).

Study subjects characterization

The sample of human volunteers consisted of 280 partici-
pants—140 from the exposed area and 140 from the control 
area. The baseline characteristics of both groups were com-
parable, except age of participants and length of time they 
had been living in the areas of exposure, which were both 
higher in the exposed area (Table 2). For age, duration of 
residence in the area, number of cigarettes smoked per day, 
the Student’s t test was used, and for sex and smoking habits, 
Fisher’s exact test was used.

Gene methylation

Of the four genes assessed in this study, p53 was associ-
ated with a higher proportion of methylation in its promoter 
region in inhabitants of areas with high concentrations of 
heavy metals in soil compared to control areas (Table 3). 
Results showed a statistically significant difference for p53 
methylation in the exposed area (16.4) compared to the 

Table 1   Primers used in the study

Forward and reverse primers

p53forward: 5′-GGG​TCT​GGG​CGG​GTG​AGT​GA-3’
p53reverse: 5′-GCA​TCT​TGT​GAC​TGG​GCT​CCT​GGG​-3’
RASSF1A forward: 5′-CTT​GAG​GCC​AGG​AGT​TTG​AG-3′
RASSF1A reverse: 5′- AGT​AGA​GAT​GGG​GTT​CAC​CA-3′
p16 forward: 5′-CAG​GRG​GGA​GGG​TCT​TCA​-3′
p16 reverse: 5′-TGA​GGC​AGG​AGA​ATC​GCT​TG-3′
APC forward: 5′-GGC​GTT​CCA​TTT​AGT​TAC​AAA​GTT​G-3′
APC reverse: 5′-GGT​TAC​TGA​GGC​ATT​CCA​TTCT-3′
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control area (9.36), with a p-value of 0.0035. There was no 
significant association between heavy metal concentration 
in soil and the p16, APC, and RASSF1A tumor-suppressor 
genes.

The methylation status of the participants was classified 
into two groups: (1) participants with no methylation in 
their promoter region and (2) participants with any degree 
of methylation in their promoter region. The crude odds 
ratio (OR) of presenting any degree of p53 methylation in 
the exposed area was 1.94 (95% confidence interval (CI): 
1.20–3.10) (Table 4).

To reduce the influence of confounders such as age and 
smoking habits, a multivariate model was used (Table 5). 
The adjusted OR for this association was 2.16 (95% CI: 
1.28–3.65, p = 0.012), after adjusting by confounders (dura-
tion of residence, smoking habits, age).

Living in an exposed area increased the chance of pre-
senting p53 methylation, with an OR adjusted for age and 
smoking of 2.16 (95% CI: 1.28–3.65, p = 0.012), adjusting 
for a history of current or previous smoking habits and age.

Discussion

Our study demonstrates that permanent inhabitants of an 
area with high levels of As and other heavy metals in soil 
show a significantly higher proportion of methylated CpG 
islands in the promoter region of p53 tumor suppressor 
gene compared with control areas. This is the first study 

to consider associations between heavy metal exposure in 
humans and DNA methylation in the Quintero and Puchun-
caví townships in Chile.

Changes caused by heavy metals have been reviewed by 
different authors (Fragou et al., 2011, Cheng et al. 2012, 
Ho et al. 2012; Bailey and Fry 2014; Cardenas et al. 2017; 
Vaiserman and Lushchak 2021). Our results support existing 
evidence that human exposure to heavy metals can cause 
epigenetic changes in important tumor-suppressor genes, 
such as hypermethylation of promoter CpG islands of the 
p53 gene (Jones and Laird 1999). Previous studies have 
reported a dose–response relationship with hypermethyla-
tion—a mechanism that has been proposed as an explana-
tion for hotspot mutations in the p53 gene. Mutations in 
the p53 gene are present in 50–60% of human cancers, and 

Table 2   Baseline characteristics 
of the study participants

* Values for statistical differences are based on the Student’s t test or Fisher’s exact test depending on the 
assumptions met by the collected data

Characteristics Control area
n = 140

Exposed area
n = 140

p-value

Age (years old) 46.83 ± 13.5 53.67 ± 15.2 0.0001*
Sex (% males) 58 M (41%) 62 M (44%) 0.717
Smoking habits 68 smokers (56%) 64 smokers (53%) 0.796
Duration of residence in area (years) 27 ± 15.7 36.9 ± 20.1 0.001*
Cigarette consumption (per day) 4.9 ± 5.4 6.3 ± 6 0.10

Table 3   Gene methylation compared by area of exposure, expressed 
in proportion of CpG islands methylated

* Values for statistical differences are based on the two-tailed Stu-
dent’s t test

Gene Control area
n = 140

Exposed area
n = 140

p-value

p53 9.36 ± 17.5 16.4 ± 22 0.0035*
p16 47.2 ± 41.5 43.3 ± 38.9 0.41
APC 25.2 ± 22.6 25.6 ± 21.5 0.89
RASSF1A 18.3 ± 18.7 19 ± 19.2 0.75

Table 4   Proportion of participants with no methylation in their pro-
moter region

* Values for statistical difference are based on Fisher’s exact test

Gene Control area
n = 140

Exposed area
n = 140

p-value

p53 82 (58.6%) 53 (37.9%) 0.0001*
p16 19 (13.6%) 26 (18.6%) 0.255
APC 23 (16.4%) 21 (15%) 0.743
RASSF1A 35 (25%) 37 (26.4%) 0.784

Table 5   Multiple logistic regressions for p53 gene (methylation ver-
sus non-methylation)

CI confidence interval, OR odds ratio

Exposure variables Beta coefficient 
(95% CI)

OR (95% CI) p-value

Duration of resi-
dence in exposed 
area

0.77 (0.24, 1.3) 2.16 (1.28, 3.65) 0.004*

Smoking habits 0.05 (– 0.46, 0,57) 1.05 (0.62, 1.77) 0.839
 > 65 years old – 0.17 (– 0,90, 

0.55)
0.84 (0.41, 1.74) 0.637

Constant (alpha) – 0.23 (– 0,7, 0.24) 0.79 (0.50, 1.27) 0.339
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this promotes genetic instability as well as the acquisition 
of additional mutations, as p53 plays a central role in the 
response to DNA-damaging agents, such as carcinogens 
(Chanda et al. 2006, Baugh et al. 2018).

When all p53 missense mutations in the DNA-binding 
domain are examined, there is a correlation between the 
frequency of p53 mutant alleles and the altered structure of 
the mutant protein (Baugh et al. 2018; Mitra et al. 2020 and 
references therein).

The evidence for significant correlations between this 
gene methylation and human exposure to heavy metals in the 
studied areas suggests that more attention should be focused 
on assessing the public health impact of this exposure in 
both the Quintero and Puchuncaví townships in Chile. It is 
particularly relevant given the fact that methylation changes 
can occur with in utero exposure, persist over time, and con-
tinue to accumulate with frequent exposure to heavy metals, 
even in the absence of the conditions that originally favored 
their development (Richards 2006; Dolinoy et al. 2007; 
Anway et al. 2005; Intarasunanont et al. 2012; Guo et al. 
2018; Bjørklund et al. 2018).

Regarding this last point, it should be taken into consid-
eration that since the appearance of the first environmental 
regulations in 1991, the rate of metal deposition in soils has 
decreased significantly (González et al. 2014; Ministerio de 
Minería, 1992). However, despite the evolution of environ-
mental regulations and corporate responsibility, no meas-
ures have been taken to remedy the environmental impact 
of heavy metals already accumulated for almost 40 years of 
unregulated emissions (Arellano 2017). Furthermore, the 
metals contained in the soils of the study area have very lit-
tle mobility within the soil profile concentrating in the first 
15 cm. (Neaman et al. 2009; De Gregori et al. 2004). These 
characteristics added to the drought that has been affecting 
the region for more than 10 years are unfavorable for the 
inhabitants that continue to be exposed to metals. Consider-
ing these facts and the results of this research, we strongly 
recommend the implementation of an environmental reme-
diation program focused on reducing as much as possible the 
human exposure to soils with high levels of heavy metals.

One weakness of this study is the observational nature of 
the collected data, which makes it difficult to reliably estab-
lish the mechanism and source of contamination and limits 
interpretation of our main finding to association rather than 
causation. Although it is clear that heavy metals were emit-
ted by the smelter in the VIC (Parra et al. 2014), the pres-
ence of other compounds, such as SO2, from other compa-
nies, such as the thermoelectric plants, could have enhanced 
the availability of the metals by acidifying the soil, while 
also causing loss of sensitive vegetation and thus facilitating 
erosive processes, which have become a serious problem 
because they facilitate the resuspension of the contaminated 
dust (Ginocchio et al. 2004; Muena et al. 2010).

The main strengths of this study include the interdisci-
plinary nature of the work, from sampling soil and human 
subjects at the same time. We used a large sample size 
and a multiple logistic regression to adjust the established 
association for confounders.

Although various media outlets and scientific publica-
tions have reported the potential health harms to humans 
in the region from heavy metal concentrations in the soil 
(e.g., Salmani-Ghabeshi et  al. 2016, Berasaluce et  al. 
2019, Tapia-Gatica et al. 2020), this study is the first to 
find evidence of an association between human health and 
soil contamination in the area surrounding the VIC.

We believe that future studies should take into account 
the importance of different environmental media and path-
ways of human exposure to heavy metals, different vulner-
able groups, and the potential association with morbidities, 
especially malignancies.

Conclusion

The results of this study suggest that the environmental pol-
lution in the townships of Quintero and Puchuncaví in Chile 
has induced epigenetic changes in the genome of its inhabit-
ants. According to these results, gene p53 and its aberrant 
methylation is associated with duration of residence in an 
area with higher heavy metal concentration in soil.
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